什么是PR与STC-PR
系统效率(performance ratio,PR)有着基本的计算公式,而系统效率也有着发电量与组件表面接收到的累积辐照量和装机容量相除的关系。
从一天内PR变化示意图可以看出,由于温度与风速的影响,产品的性能会受到影响。通过电站年度PR示意图可以观察到,春冬季节相对来说电站整体PR值会偏高,而在秋季PR值普遍偏低,由于季节性差异导致的系统差异,此方法用于一般性长期评估。基于以上公式和结论,就不得不提出STC-PR(STC performance ratio)的概念,即温度修正后的系统效率PR。
STC-PR通过公式,除去环境温度对于系统效率的影响,多用于短期评估,减少由于季节性差异导致的系统效率差异。而在长期的PR评估中,季节性低谷对电站评估是存在问题的。
通过STC-PR修正后PR值趋于平稳。
通过以上的结论,可以得知,PR 每时刻都在变化,一般指的是年平均效率,常规测试周期为1整个自然年。短期评估PR,优先选择STC-PR(电站交易评估)。随着电站设计相对优化,产品性能提升,PR值从早期的50%-75%已经提升到普遍超过80%甚至更高。
影响PR的主要因素及优化方法
影响PR值得主要因素包括12点,如下图和表:
1、IAM入射角损失
IAM入射角的损失主要由于反射引起,从右图可知透光率相对是降低的,蓝线代表镀膜玻璃,镀膜本身可以增加透光率,性能相较更好一些,对于常规组件性能可能会稍弱一些。
2、阵列最佳倾角和阵列间距
在前期设计时一般会遇到九点至下午三点不会出现任何的遮挡,但在九点之前及下午三点后都会出现不同程度的遮挡情况,这一部分对于电站的PR值是很大的影响因素。左图绿线没有遮挡的情况,其最佳倾角已经达到40°,而电站在设计中会考虑到前后遮挡的问题,所以会降低在34°-35°。除此之外,考虑电站本身的电气影响相对可能会到33°,甚至32°左右。所以如果前期设计自身存在缺陷,对后期发电是有严重的影响的。
3、其他遮挡
电站普遍具有其他的一些遮挡诸如积雪、灰尘、鸟粪等。对于分布式电站,还存在建筑物和近遮挡影响发电量的情况。
4、组件功率偏差
组件厂家供货标称功率偏差正公差在0~+5W,正负偏差±5W,组件功率偏差对功率的影响是很大的。通过观察组件的功率衰减曲线,在25年甚至30年情况下,更换组件是必然的。
5、组件功率温度损失
组件功率温度也存在损失,非晶硅最大功率温度系数基本在-0.2%/℃,晶硅组件最大功率温度系数基本-0.4%/℃。也就是说,在组件温度较高时,性能相对是降低的。通过下图对比不同温度和不同辐照度的情况下,同一组件的功率值在75℃时已经降低了很多。
6、组件弱光性能
弱光性能即当辐照较低,阴天情况时,不同种类工艺的组件对辐照频谱响应不同,弱光效果好的组件在阴雨天有优势。通过下图对比,A厂家和C厂家在200W/㎡至600 W/㎡的情况下,组件输出性能明显高于其他技术组件,所以在前期根据需求采购弱光性能好的组件是非常重要的。
7、组串失配
组串失配包括电流失配和电压失配。电流偏差引起(混装、未进行电流分档)影响较大,电压偏差引起(混装)影响较小。
电流失配由同一组串中串联的各电池组件间电流不同导致,串联电路中,组串电流由组串中组件电流最低的组件决定。如下图模拟显示,针对5%的电流偏差,如果在没有进行电流分档情况下进行混装,显示可以达到-2.5%。
电压失配由并联的各个组串电压不同导致,电压的不同影响了逆变器的MPPT跟踪。通过下图观察到,目前电站在大部分情况下,P-U图上(虚线)最大功率点附近电压变动导致功率变化很小,且组串电压随机概率分布,不会出现某个偏大或偏小的情况,电压平均后不会累积偏差,而是减小偏差。所以实际上电压失配对功率输出影响是较小的。
8、组件LID损失
组件LID损失即光致衰减,晶硅电池组件在使用初期短时间内功率发生较大幅度下降;而在继续接受光照一段时间后,输出功率会出现回升,之后以较低的稳定水平缓慢下降。所以在初期情况下,一般厂家会保证2.5%至3%的功率衰减。
9、逆变器损失
前期在挑选逆变器时,逆变器本身是有着最大的转化效果,但不同逆变器在不同情况下最高效率是不一样的,通过下图不同逆变器的实验可以观察出,最上面两条曲线的逆变器损失在当时的光伏电站内达到2%,在长期的运营情况下,逆变器损失影响着整个发电量。
挑选逆变器的时候,我们可以发现逆变器其实本身给了一个最大的转化效果,但是不同的逆变器在不同的情况下,最高的效率是不一样的。我们从右边这个图上可以看到,当时的厂家我们做了实验,实验的次序大家可以看到最上面两条曲线的逆变器的一个损失大概是在光伏电站里面达到2%,但是不同厂家的逆变器厂家其实在长期运营的情况下影响整个的发电量。
另外还有一种情况,阵列超装严重,主要因为目前光伏直流侧配比问题,严重的超装会导致逆变器削峰损失。
10、直、交流线损&11、变压器损耗&12、系统可利用率
另外,直、交流线缆损失,变压器损耗(空载和负载损耗)和系统的可利用率(主要由支架、组件、线缆、汇流箱、逆变器、箱变及升压系统可靠性决定)也是影响PR值得因素。
针对以上12条损失因素,基于TÜV SÜD统计,列出了光伏电站优化PR统计表。在入射角损失方面,在前期选择透射率较高的组件或者采用现在较为流行的跟踪支架;对于阵列最佳倾角和阵列间距遮挡增加阵列间距;组件方面主要体现在前期功率的选择,包括组件功率温度损失与弱光性能;逆变器上选择不同负载点高效率逆变器,优化阵列与逆变器的容量配比等等。
TÜV SÜD 2017年市场调研数据分享
TÜV SÜD于2017年对中国光伏行业相关企业进行了调研,包括第三方监测机构、分销商、采购商及厂家,通过136份有效的问卷,产品类型几乎涵盖光伏电站的所有产品。
调研单位规模多数在500人以上,受访人的职位相对来中层居多。
通过调研,组件是光伏产品质量集中在隐裂、衰减过多、接线盒/二级管的连接问题与质量一致性较差上;电站方面集中在安全不规范、设计缺陷、运行不规范的问题;逆变器故障率高问题达到了47%,而过热、效率低和炸机风险问题也值得注意;材料集中在接线盒、背板、连接器、EVA和线缆上。
TÜV SÜD电站服务组件质量实验室缺陷统计,进行了尽调、电站评估,有样品抽检的项目失败占比(PID、EL、衰减)达到了41%,组件在电站应用中最常见的失败因素,首要便是接线盒故障,其次是电池破片/隐裂,主栅极虚化与蜗牛纹等问题也非常常见。
TÜV SÜD 南德认证简介
TÜV SÜD 南德认证从成立至今已有150余年,分布全球1000多个办事处,2017年销售额达到24.28亿欧元,全球约有2.4万名员工。作为独立的第三方,致力于提供一站式的供应商解决方案。
技术服务涵盖光伏组件、光伏线缆、光伏材料、光伏电子系统设备及光伏电站的测试、认证、评估与培训。
作为最早开始从事光伏电站检测的外资第三方机构,2012年颁发全球首张光伏电站TÜV认证证书,持续为国内累计超过30GW的光伏电站提供技术服务。
TÜV SÜD南德意志集团的光伏电站技术服务已遍布全球。